Skip to main content

Day 12 (7/23/19): Bounding Classifiers

Today I experimented with different bounded classifiers for open set recognition. A bounding classifier essentially is a type of model which can detect out-of-distribution (OOD) samples, i.e. when presented with an image of a class it has not been trained on. In the image below, a bounded classifier would identify images found in the less dense regions as unknowns rather than try to fit them to a previously-learned class.



I performed my experiment evaluating different bounding classifiers by testing a Resnet50's accuracy in detecting out-of-distribution samples (original dataset is CUB200) either from generated Gaussian noise or the Oxford Flowers dataset. Here are two sample images from those respective dataloaders:



The results I achieved were very similar to those shown in this table (the third row is the CUB200 dataset):



Tomorrow I hope to finally begin to look into the intersection of incremental learning and open set recognition (having experiment with both aspects individually). Then, I will be able to formulate a better idea of the kinds of results I can expect to see for my project.

Comments

Popular posts from this blog

Day 29 (8/15/19): Final Day Before Presentations

Most of today was also spent practicing and editing my presentation to make it as professional as I can. I'm really looking forward to the opportunity to present my work to faculty and friends tomorrow. Here is a link to the slides for my final presentation: Novelty Detection in Streaming Learning using Neural Networks

Day 28 (7/14/19): Presentation Dry Run

In the morning, all of us interns got the chance to practice our presentations in front of each other in the auditorium. I was pretty happy with how mine went overall but the experience was definitely valuable in identifying typos or slight adjustments that should be made. Throughout the rest of the day, I tried to implement these changes and clean up a few plots that I want to include for Friday.