Skip to main content

Day 24 (8/8/19): Multilayer Perceptron Experiment

I continued gathering more results for my presentation today, and the data table is coming along nicely. We are able to see a significant trend that using Mahalanobis instead of Baseline Thresholding recovers much of the OOD recognition that is lost with streaming or incremental models. The SLDA model appears to be a lightweight, accurate streaming model which can be paired with Mahalanobis to be useful as an embedded agent in the real world.


For the purposes of demonstrating catastrophic forgetting, I ran five experiments and averaged the results for a simple incrementally trained MLP. Obviously, the model failed miserably and was achieving only about 1% of the accuracy of the offline model. Including this is only to show how other forms of streaming and incremental models are necessary to develop lifelong learning agents.


A diagram of a simple multilayer perceptron.

Comments

Popular posts from this blog

Day 29 (8/15/19): Final Day Before Presentations

Most of today was also spent practicing and editing my presentation to make it as professional as I can. I'm really looking forward to the opportunity to present my work to faculty and friends tomorrow. Here is a link to the slides for my final presentation: Novelty Detection in Streaming Learning using Neural Networks

Day 28 (7/14/19): Presentation Dry Run

In the morning, all of us interns got the chance to practice our presentations in front of each other in the auditorium. I was pretty happy with how mine went overall but the experience was definitely valuable in identifying typos or slight adjustments that should be made. Throughout the rest of the day, I tried to implement these changes and clean up a few plots that I want to include for Friday.

Day 9 (7/18/19): Incrementally Learning CUB200

Today I continued my work learning about incremental learning models by testing out different strategies on the CUB200 dataset. From what I understand from reading various articles, there seem to be five different approaches to mitigating catastrophic forgetting in lifelong learning models. These are regularization methods (adding constraints to a network's weights), ensemble methods (train multiple classifiers and combine them), rehearsal methods (mix old data with data from the current session), dual-memory methods (based off the human brain, includes a fast learner and a slow learner), and sparse-coding methods (reducing the interference with previously learned representations).  All of these methods have their constraints and I don't believe it is yet clear what method (or what combination of different methods) is best. Full rehearsal obviously seems to be the most effective at making the model remember what it had previously learned but given that all training exam...