Skip to main content

Day 20 (9/2/19): Fixing OOD Evaluation with Equal Sample Distribution

Today I reran the experiments from yesterday with the dataloaders for the OOD performance evaluation having equal in- and out-loader sample sizes. Theoretically, this would lead to a more accurate AUROC metric. However, just glancing at a visualization of the new results, it appears that we are achieving the same interesting results as yesterday. Unsure of the underlying reason why, I hope to plot the metrics we calculated on the same set of axis to get a better representation of the results.


Comments

Popular posts from this blog

Day 9 (7/18/19): Incrementally Learning CUB200

Today I continued my work learning about incremental learning models by testing out different strategies on the CUB200 dataset. From what I understand from reading various articles, there seem to be five different approaches to mitigating catastrophic forgetting in lifelong learning models. These are regularization methods (adding constraints to a network's weights), ensemble methods (train multiple classifiers and combine them), rehearsal methods (mix old data with data from the current session), dual-memory methods (based off the human brain, includes a fast learner and a slow learner), and sparse-coding methods (reducing the interference with previously learned representations).  All of these methods have their constraints and I don't believe it is yet clear what method (or what combination of different methods) is best. Full rehearsal obviously seems to be the most effective at making the model remember what it had previously learned but given that all training exam...

Day 24 (8/8/19): Multilayer Perceptron Experiment

I continued gathering more results for my presentation today, and the data table is coming along nicely. We are able to see a significant trend that using Mahalanobis instead of Baseline Thresholding recovers much of the OOD recognition that is lost with streaming or incremental models. The SLDA model appears to be a lightweight, accurate streaming model which can be paired with Mahalanobis to be useful as an embedded agent in the real world. For the purposes of demonstrating catastrophic forgetting, I ran five experiments and averaged the results for a simple incrementally trained MLP. Obviously, the model failed miserably and was achieving only about 1% of the accuracy of the offline model. Including this is only to show how other forms of streaming and incremental models are necessary to develop lifelong learning agents. A diagram of a simple multilayer perceptron.