Skip to main content

Day 21 (8/5/19): Averaging Experiments

This morning I was at a basketball camp so I came into the lab around noon. Much of the day was spent waiting for some models to finish training to I worked on adding some slides to my presentation document.

In the afternoon, I got back results from models that I could average together to get more accurate results. The general trend remained the same however which indicated that the Mahalanobis Intra Dataset OOD actually performed better when it was trained incrementally (albeit with full rehearsal) than when it was trained offline. I am not sure yet what the reason for this is, but I will continue to look into it.
The green line denotes the intra dataset mahalanobis OOD omega for full rehearsal. Note how it consistently is above 1 even as more batches are learned incrementally.

Comments

Popular posts from this blog

Day 22 (8/6/19): Streaming Linear Discriminant Analysis

Today I tested the previously trained models using the Stanford dogs dataset as the inter dataset evaluator for OOD instead of the Oxford flowers dataset. However, as expected, the omega values for performance were pretty much the same as before and didn't make much of a difference as the datasets varied.  I also implemented a streaming linear discriminant analysis model (SLDA) which differed from the previous incrementally trained models. This model didn't perform as well in terms of accuracy however as only the last layer of the model was trained and streaming is more of a difficult task. Nevertheless, we did show that Mahalanobis can be used in a streaming paradigm to recover some OOD performance in an online setting. This is likely to be a large focus of my presentation as it has never been discussed prior. Tomorrow, I plan to implement an L2SP model with elastic weight consolidation as well as iCarl to serve as two more baselines to compare our experiments to.

Day 24 (8/8/19): Multilayer Perceptron Experiment

I continued gathering more results for my presentation today, and the data table is coming along nicely. We are able to see a significant trend that using Mahalanobis instead of Baseline Thresholding recovers much of the OOD recognition that is lost with streaming or incremental models. The SLDA model appears to be a lightweight, accurate streaming model which can be paired with Mahalanobis to be useful as an embedded agent in the real world. For the purposes of demonstrating catastrophic forgetting, I ran five experiments and averaged the results for a simple incrementally trained MLP. Obviously, the model failed miserably and was achieving only about 1% of the accuracy of the offline model. Including this is only to show how other forms of streaming and incremental models are necessary to develop lifelong learning agents. A diagram of a simple multilayer perceptron.